opened for jumber 20/2/2013

Total No. of Printed Pages: 13

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-2013

SUBJECT: Chemistry

A /		11393 Sr. No.
Time: 11/4 Hours	Max. Marks: 100	Total Questions: 100
Roll No. (in figures)	(in words)	
Name	Father's Name	
Mother's Name	Date of Examination _	
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory and carry equal marks.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- 4. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers **Must Not** be ticked in the question booklet.
- 5. Use only black or blue ball point pen of good quality in the OMR Answer-Sheet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet, containing 100 questions (Sr. No. 1 to 100). Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-2013/Chemistry/(A)

1. C = C frequency in Oct-4-ene appears at:

- (1) 1680-1600 cm⁻¹ (very weak)
- (2) 1680-1600 cm⁻¹ (strong)
- (3) 1680-1600 cm⁻¹ (m)
- (4) No peak in this region of 1680-1600 cm⁻¹

2. I for C-13 is:

- (1) 1 (2) 1/2 (3) 3/2 (4) 2

3. I for P-31 is:

- (1) 1
- (2) 1/2 (3) 3/2
- (4) 3

4. What is the right order of coupling constants?

- (1) $J^1 > J^2 > J^3$ (2) $J^3 > J^2 > J^1$ (3) $J^1 = J^2 = J^3$ (4) None of these

5. Which aromatic band shows fine structure?

- (1) Primary
- (2) Secondary (3) Tertiary
- (4) None

6. Which is a better Diels Alder Diene for reaction with maleic anhydride?

- (1) Furan
- (2) Pyrrole
- (3) Thiophene
- (4) Pyridine

7. Which is a strong base?

- (1) Aniline (2) Cyclohexylamine
- (3) Pyrrole

(4) Quinoline

8. Which is the right decreasing order of nucleophilicity?

(1)
$$CH_3 - CH_2 > NH_2 > CH \equiv C > OH$$

(2)
$$CH \equiv C > NH_2 > CH \equiv C > OH$$

(3)
$$\stackrel{\Theta}{OH} > \stackrel{\Theta}{NH_2} > CH \equiv \stackrel{\Theta}{C} > CH_3 - \stackrel{\Theta}{CH_2}$$

(4)
$$\stackrel{\Theta}{NH_2} > CH \equiv \stackrel{\Theta}{C} > OH > CH_3 - \stackrel{\Theta}{CH_2}$$

9.	Which gives si	ngle mononitroderiv	ative?	
	(1) Naphthale	ene (2) O-xylene	(3) Ethylbenzene (4) p-xylene	
10.	Which one is n	nost effective in an SI	N ² displacement on methyl bromide?	
	(1) $C_2H_5\overset{\Theta}{O}$	(2) HO	(3) $C_6H_5\overset{\Theta}{O}$ (4) $CH_3CO\overset{\Theta}{O}$	
11.	Which reacts fa	astest with N-bromos	uccinimide (NBS) ?	
	(1) Toluene	(2) Methane	(3) Pyridine (4) Benzene	
12.	When vinyl cya	anide reacts with eth	ylalcohol in presence of a base, what is forme	d?
	(1) $CH_2 = CH$	-ОН 👫	(2) $C_2H_5O - CH_2 - CH_2CN$	
	(3) CH ₃ CH ₂ O	DH .	(4) $C_2H_5 - O - C_2H_5$	
13.	Which is the be	est leaving group?		
	(1) Chloride	(2) Fluoride	(3) Tosylate (4) None	
14.	With cis-alkene	es, the triplet carbene	s give :	
	(1) cis-produc	t .	(2) trans-product	
	(3) no product	t	(4) both cis and trans products	
15.	DNFB is used t	to identify N-termina	l amino acid of peptides. The reagent is calle	d:
	(1) Van-Slyke	reagent	(2) Sorenson reagent	
	(3) Sanger's re	eagent	(4) Stephens reagent	
16.	Continuous wa	ave NMR spectroscop	y involves :	
	(1) sequential	detection of resonance	es of nuclei	
	(2) simultaneo	ous detection of all res	sonances of nuclei	
	(3) sometimes	sequential and some	times simultaneous detection of nuclei	
	(4) None	. (3)		
PG-EE-	-2013/Chemistry	y/(A)		

PG-EE-2013/Chemistry/(A)

		2003 N. P.
17.	The addition of Br_2 to methyl acetylene	to give trans-1, 2-dibromopropene is a :
	(1) Stereoselective reaction	(a) promise in the second of t
	(2) Stereospecific reaction	Captie laor,
	(3) Stereoselective and Stereospecific re	action
	(4) None	
18.	. The reagent used in Edman degradation	for N-terminal group analysis of peptides is:
	(1) Phenyl isothiocyanate	(2) Benzylchloroformate
	(3) DNFB	(4) Di-t-butyl carbonate
19.	Aspartic acid shows:	
	(1) pKa_1	(2) pKa ₂
	(3) pKa_1 and pKa_2	(4) pKa_1 , pKa_2 and pKa_3
20.	Which is incorrect about grading of suga	rs?
	(1) Sucrose-1 (2) Fructose-1.75	(3) Lactose-6 (4) Saccharin-3500
21.	Which is a local anaesthetic?	A Carlot of the Analysis research forms
	(1) Cocaine (2) Quinine	(3) Morphine (4) None
22.	Which enhances the absorption of Vitam	in A?
	(1) Vit. K (2) Vit. C	(3) DMG (4) None
23.	By which of the following reaction, aceto	phenone can be converted to phenol?
	(1) m-CPBA followed by base catalyzed	
	(2) Conc. HNO ₃	ARIAN PARAMETERS
	(3) Iodine and NaOH	second the second secon
	(4) Singlet oxygen followed by hydrolys	is
24.	Diazomethane with acetylene gives:	Sequential and the sequential an
		(3) Piperidine (4) Pyrimidine

25.	Cinnamoyl alcohol with lead tetraaceta	te gives :
	(1) Cinnamic acid	(2) Cinnamoyl acetate
	(3) Cinnamaldehyde	(4) Acetophenone
26.	Betaine is an intermediate in :	and the second one section when the second of the second o
	(1) Wittig reaction	(2) Stobbe reaction
	(3) Stephenson reduction	(4) MPV reduction
27.	If the migrating group in Beckman rear	rangement is chiral, then:
	(1) Its configuration will change	
	(2) Its configuration will be retained	
	(3) Both	. The state of the
*	(4) None	us to bruit in a mount count mission in the life of su
28.	Which reduces only the carbonyl grobond and ester functional groups?	up in the presence of nitro, carboxyl, double
	(1) LAH (2) Na/NH ₃	(3) NaBH ₄ (4) H ₂ /Ni
29.	Which is the correct decreasing order substitution?	r of reactivity towards electrophilic aromatic
	(1) Indole > Pyrrole > Pyridine	(2) Pyrrole > Pyridine > Indole
	(3) Pyrrole > Indole > Pyridine	(4) Indole > Pyridine > Pyrrole
30.	OH signal of alcohol appears at what p	
	(1) 0.5 – 5.0 (2) 0.1 – 8.0	(3) 0.3 – 4.0 (4) 0.3 – 10.0
31.	What is the decreasing order of chemical	al shifts for protons among these?
	(1) Alkynes > Alkanes > Alkenes	(2) Alkanes > Alkenes > Alkynes
	(3) Alkynes > Alkenes > Alkanes	(4) Alkenes > Alkynes > Alkanes
PG-EE	-2013/Chemistry/(A)	CANADAM OF THE SET OF

PG-EE-2013/Chemistry/(A)

P. T. O.

32.	The singlet at about 4.0 ppm in the proton NMR spectrum of methylacetate is due to which protons?									
	(1) Methyl		(2)	Methoxy						
	(3) Methyl and M	ethoxy	(4)	None of these						
33.	Which is <i>not</i> an an	ti-cancer drug?			44					
	(1) Vincristine	*	(2)	Cyclophosphar	mide					
	(3) Doxorubicin		(4)	Gabapentin						
34.		ction with metachlo hydride and then v	Miles Edition				ent with			
	(1) Hexane	(2) Hexan-1-ol	(3)	Hexan-2-ol	(4)	None				
35.	Write the symbol o	of atomic orbital if n	= 3, 1	= 2 and $m = -2$,	. – 1,	0, + 1, + 2:				
	(1) 2s	(2) 3s	(3)	3р	(4)	3d				
36.	An element with at	tomic number 72 bel	longs	to:						
	(1) s-block	(2) p-block	(3)	d-block	(4)	f-block				
37.	Which of the follow	ving metals has low	est io	nization potenti	al?					
	(1) Lithium	(2) Sodium	(3)	Berylium	(4)	Magnesium				
38.	Which cation has h	ighest polarizing po	wer	?						
	(1) Na ⁺	(2) Mg^{2+}	(3)	K ⁺	(4)	Al^{3+}				
39.	How many lone pa	irs of electrons are p	orese	nt in ICl_2^- ion?						
	(1) Zero	(2) One	(3)	Two	(4)	Three				
40.	Which of the follow	ving molecules/ions	has	smallest O – O b	ond	?				
	(1) O ₂	(2) O ₂ ⁺	(3)	O ₂	(4)	O_2^{2-}				
41.	In Rutile structure,	the coordination nu	imbe	r of Titanium ato	oms	is:				
	(1) Six	(2) Four	(3)	Two	(4)	Eight				

42.	Wh	nich of the follow	ring	metal ion pairs h	nave	similar ionic rac	dii?	
	(1)	Ti^{4+} and Zr^{4+}	wi		(2)	V^{5+} and Nb^{5+}		
	(3)	Cr^{3+} and Mn^{3-}	+		(4)	Zr^{4+} and Hf^{4+}		W. Annu
43.	Wh	nich of the follow	ing	solid will behave	e as	p-type semicond	lucto	or?
	(1)	NaCl	(2)	ZnS	(3)	FeS	(4)	AgCl
44.	Wh	nich metal has hi	ghes	t cohesion energ	y?			
	(1)	Cobalt	(2)	Nickel	(3)	Copper	(4)	Zinc
45.	The	e aqueous solutio	on of	which metal ion	n wi	ll be colourless?		
	(1)	Ti^{3+}	(2)	Cr ³⁺	(3)	Cu ⁺	(4)	Cu ²⁺
46.	Wh	nich of the follow	ing	is a Lanthanide	elem	nent?		
	(1)	Francium	(2)	Europium	(3)	Tungsten	(4)	Polonium
47.	In t	the reaction HCl	04+	$HF \rightleftharpoons H_2F^+ +$	ClO;	$\frac{1}{4}$, the base is:		
	(1)	HClO ₄	(2)	HF	(3)	H_2F^+	(4)	ClO ₄
48.	Wh	nich of the follow	ring	will behave as a	Lew	vis acid?		
	(1)	NH ₃	(2)	NH ₄ ⁺	(3)	BF_3	(4)	CH ₄
49.	If y	ou titrate an aqu	eou	s solution of bor	ax w	rith HCl, indicate	or us	sed will be:
	(1)	Phenolphthalei	n		(2)	Methyl orange		
	(3)	Methyl red			(4)	Eriochrome bla	ck T	
50.	As	per HSAB conce	pt, t	he hardest acid	will	be:		
	(1)	Fe ³⁺	(2)	Zn^{2+}	(3)	Ag^+	(4)	Hg ²⁺
51.	Wh	nich of the Halog	ens	is strongest oxid	izin	g agent in water	?	
	(1)	F ₂	(2)	Cl ₂	(3)	Br ₂	(4)	I_2
52.	Wh	nich of the oxides	is is n	nost acidic in nat	ture	?		
	(1)	СО	(2)	CO ₂	(3)	N_2O_5	(4)	SO ₃
PG-EE	PG-EE-2013/Chemistry/(A)							

53.	Which of the follow	wing is most stable	?	
	(1) Ce ²⁺	(2) Eu ²⁺	(3) Sm^{2+}	(4) Pr ²⁺
54.	Pitchblende is an C	Ore of :		
	(1) Lanthanum	(2) Cerium	(3) Uranium	(4) Thorium
55.	How many Isomer	s are possible for th	ne complex $K_2[Pt(NH)]$	₃) ₄ Cl ₂] ?
	(1) One	(2) Two	(3) Four	(4) Six
56.	What is the spin or		ent of $[Fe(CN)_6]^{3-}$ ion	?
		(2) 4.90		(4) 1.73
57.	Which of high spin	octahedral comple	ex will show tetragona	al distortion?
	$(1) d^3$	(2) d^4	(3) d^5	(4) d^8
58.	How many unpair	ed electrons are pro	esent in $[CoF_6]^{3-}$ ion?	
	(1) Zero	(2) One	(3) Two	(4) Four
59.	Predict the type of	isomerism in [Co(1	$NH_3)_6$ [Cr(CN) ₆] and	$[Cr(NH_3)_6][Co(CN)_6]$:
	(1) Linkage Isome		(2) Coordination	
	(3) Stereoisomeris	sm	(4) Coordination	position Isomerism
60.	Which of the follow	wing complex ions	will not be square pla	nar in structure ?
	(1) $\left[C_0(CN)_4\right]^{2-}$	(2) $[Ni(CN)_4]^{2-}$	(3) $\left[Cu(NH_3)_4\right]^{2+}$	(4) Ni(CO) ₄
61.	How many peaks	are observed in UV	7-visible absorption sp	ectra of $\left[Ni(H_2O)_6\right]^{2+}$?
		(2) Two		(4) Four
62.	Write the Ground	Term of Cr^{3+} :		
	(1) 6 _S		(3) 2 _D	(4) 3_{P}
63.	Predict the Point C	Group in Fe(CO) ₅ :	9 (And 12)	
	(1) O _h	(2) C _{3V}	(3) C _{2V}	(4) D _{3h}
64.	Nitrogenase enzyr	me consists of:		
	(1) Co	(2) Se	(3) Mo, Fe	(4) Mg
PG-EI	E-2013/Chemistry/(A	A)		P. T. O.

65.	Vitamin B_{12}	consists of :
	(1) Fe	(2) Co
66.	Complete the	reaction:

$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{141}_{56}Ba + {}^{92}_{36}Kr + \dots$$

$$(1) 2 {}^{1}_{0}n \qquad (2) {}^{1}_{1}H \qquad (3) {}^{2}_{1}H \qquad (4) {}^{4}_{2}He$$

(3) Mn (4) V

Bhopal Tragedy which killed thousands of people, was due to air pollution of:

(2) SO₂

(3) Nitrogen oxides

(4) Methyl Isocyanate

68. The cartesian components of angular momentum in a direction parallel to x-axis is given by:

(1)
$$\hat{L}_x = i\hbar \left[x \cdot \frac{\partial}{\partial x} - z \cdot \frac{\partial}{\partial z} \right]$$
 (2) $-i\hbar \left[y \cdot \frac{\partial}{\partial z} - z \cdot \frac{\partial}{\partial y} \right]$

(2)
$$-i\hbar \left[y \cdot \frac{\partial}{\partial z} - z \cdot \frac{\partial}{\partial y} \right]$$

(3)
$$\hat{L}_x = i\hbar \left[y \cdot \frac{\partial}{\partial z} - z \cdot \frac{\partial}{\partial y} \right]$$
 (4) $-i\hbar \left[x \cdot \frac{\partial}{\partial z} - z \cdot \frac{\partial}{\partial x} \right]$

(4)
$$-i\hbar \left[x \cdot \frac{\partial}{\partial z} - z \cdot \frac{\partial}{\partial x}\right]$$

69. Operators \hat{A} and \hat{B} are said to be commutative, if :

 $(1) \hat{A} - \hat{B} = 0$

 $(2) \hat{A} + \hat{B} = 0$

(3) $\hat{A} \hat{B} - \hat{B} \hat{A} = 0$ (4) $\hat{A} \hat{B} + \hat{B} \hat{A} = 0$

The wave function for a particle in one dimensional box is expressed as:

(1) $\frac{\sqrt{2}}{a} \sin \frac{n\pi x}{a}$ (2) $\sqrt{\frac{2}{a}} \frac{n\pi x}{a}$ (3) $\sqrt{\frac{2}{a}} \sin \frac{\pi x}{a}$ (4) $\sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$

The Boyle temperature is that at which the second virial coefficient of real gas is:

(1) zero

(2) one

(3) four

(4) one and half

The fugacity function is defined as:

(1) $\underset{P\to 0}{limit} \frac{p}{f} = 1$ (2) $\underset{P\to 0}{limit} \frac{f}{p} = 1$ (3) $\underset{f\to 0}{limit} \frac{p}{f} = 1$ (4) $\underset{P\to 0}{limit} \frac{p}{f} = 0$

PG-EE-2013/Chemistry/(A)

73. Choose the correct relation :

(1)
$$(\partial A/\partial T)_p = \left(\frac{\partial G}{\partial T}\right)_V$$
 (2) $\left(\frac{\partial A}{\partial T}\right)_V = \left(\frac{\partial G}{\partial T}\right)_P$

(2)
$$\left(\frac{\partial A}{\partial T}\right)_V = \left(\frac{\partial G}{\partial T}\right)_P$$

(3)
$$\left(\frac{\partial T}{\partial S}\right)_{P} = \left(\frac{\partial V}{\partial S}\right)_{P}$$

(3)
$$\left(\frac{\partial T}{\partial S}\right)_P = \left(\frac{\partial V}{\partial S}\right)_P$$
 (4) $\left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial T}{\partial V}\right)_P$

For the combustion of one mole of $CH_3COOH(l)$ at 298 K, Δn is:

$$(4) -1/2$$

75. In the limit $T \rightarrow 0$, for a crystal:

$$(1) S_T = 3C_p$$

(1)
$$S_T = 3C_p$$
 (2) $S_T = 2C_p$ (3) $S_T = C_p/2$ (4) $S_T = C_p/3$

(3)
$$S_T = C_p / 2$$

$$(4) S_T = C_p / 3$$

where C_p is the heat capacity at constant pressure.

The compressibility factors of Vander Waal gas at critical point is:

The Joule-Thomson expansion of an ideal gas is:

(1) Adiabatic process

(2) an isentropic process

(3) an isenthalpic process

(4) an isothermal process

The spacing between 123 planes in an orthorhombic unit cells having a = 50 pm, b = 100 pm and c = 150 pm is:

(1) 2.9 pm

(2) 29 pm

(3) 9.2 pm (4) 92 pm

79. The cell potential is a:

(1) Colligative property

(2) Thermodynamic property

(3) Intensive property

(4) Extensive property

The solubility of silver chloride in water at 298.15 K is 0.00179 g litre⁻¹. The solubility product will be:

(1) $156 \times 10^{-10} \,\mathrm{mol}^2 \,\mathrm{dm}^{-6}$

(2) $1.56 \times 10^{-9} \text{ mol}^2 \text{dm}^{-6}$

(3) $15.6 \times 10^{-12} \,\mathrm{mol}^2 \,\mathrm{dm}^{-6}$

(4) $1.56 \times 10^{-10} \,\mathrm{mol}^2 \,\mathrm{dm}^{-6}$

81.	In the lead acid ba	In the lead acid battery during charging, the cathode reaction is:							
	(1) reduction of P	b^{+2} to Pb	(2)	formation of I	PbSO.	4			
	(3) formation of P	PbO ₂	(4)	None of these					
82.	When a radioactive	e element loses one '	α' an	d two 'β' particl	es, it	yields:			
	(1) Isobar	(2) Isomer	(3)	Isotope	(4)	Allotrope			
83.	50 ml of 0.1 NaOH	are added to 49 ml c	of 0.1	HCl. The pH of	the r	esulting solution is			
	(1) 12	(2) 11	(3)	10	(4)	9			
84.	The heat of reaction	The heat of reaction is independent of:							
	(1) Pressure		(2)	Temperature					
	(3) Physical state		(4)	The path by w	hich	product is formed			
85.	Which of the follow	ving will show ESR	spect	ra?					
	(1) C_6H_6	(2) CH ₃	(3)	CH ₄	(4)	H_2			
86.	What is the frequen	ncy of radiation poss	sessin	g wave length	400 n	m ?			
	(1) $7.5 \times 10^{-14} \mathrm{S}^{-1}$	(2) $7.5 \times 10^{14} \text{ S}^{-1}$	(3)	$7.5 \times 10^9 \text{S}^{-1}$	(4)	$7.5 \times 10^{-13} \mathrm{S}^{-1}$			
87.	In aerosol, the disp	ersion medium is:							
	(1) Gas	(2) Solid	(3)	Liquid	(4)	Mixture of all			
88.	The polymers cons	ist of coil like polym	er ch	ain are :					
	(1) Thermoplasts	(2) Elastomers	(3)	Thermosets	(4)	None of these			
89.	Which of the follow	ving is a state function	on?						
	(1) E-PV	(2) E + PV	(3)	Q/W	(4)	Q-W			
90.	The ilkovic equation	n for diffusion curre	ent is	expressed as:					
	$(1) \overrightarrow{I}_d = 607n DC$	$m^{2/3} t^{1/6}$	(2)	$\overrightarrow{I}_d = 607n D^{1/2}$	² C m	2/3 t ^{1/6}			
	$\overrightarrow{I}_d = 607nC D^1$	$1/2 m^{2/3} t^{1/6}$	(4) $\overrightarrow{I}_d = 607n D^{1/2} C^{1/2} m^{1/3} t^{1/6}$						

91.	The force constant	of a diatomic S.I	H.O. can l	oe calculated	l by employing relat	tion:
	$(1) k = 4\pi^2 c^2 \left(\overline{v}^2\right) \mu$		(2)	$k = 4\pi^2 c \left(\overline{v}^2\right)$)μ	
	(3) $k = 4\pi^2 c(\overline{v}) \mu^2$		(4)	$k = 4\pi^2 \mu c$	Server betil	
	where all the symb	ools have their us	sual mear	ning.		
92.	Zero point energy	for diatomic mo	lecule po	ssessing har	monic motion is:	
	(1) zero	(2) hv	₹ - (3)	$\frac{1}{2}hv$	$(4) \frac{1}{3}hv$	
93.	The power output is:	of a laser in wh	nich 2.0 J	pulse can be	delivered in one na	anosecond
	(1) 2.0 GW	(2) 20.0 GW	(3)	0.20 GW	(4) None of th	ese
94.	For Arhenius equa	ation, $A = e^{-E_a/R}$	T , if $T \rightarrow$	∞, then valu	te of E_a will be:	
	(1) positive	(2) negative	(3)	zero	(4) equal to A	
95.	The molarity of pu	ire water is:				
	(1) 50	(2) 18	(3)	100	(4) 55.6	
96.	The degeneracy of is:	the rotational en	nergy lev	el with J = 4	for a heterodiatomi	c molecule
	(1) 4	(2) 7	(3)	9	(4) 8	
97.	Mean free path of (1) inversely prop (2) directly prop (3) independent of (4) independent of	portional to pressure of pressure	sure	13) (rec)		4 1 . 63
98.	In B.E.T. equation	one of the follow	wing state	ement is <i>not</i>	true. Select the one	

(1) It considers the multi-layer adsorption

(3) It is not valid for porous adsorbent

(2) It doesn't use the concept of saturation of vapour pressure

(4) It uses the concept of latent heat of condensation

- No diffraction would result, if:

- (1) $\lambda < < 2d$ (2) $\lambda \approx 2d$ (3) $\lambda < < d$ (4) $\lambda > > 2d$
- 11.2×10³ m³ of a gas at STP requires 104.6 J to raise its temperature by 10 degree. The C_v for the gas is:
 - (1) 20.92 J deg⁻¹ mole⁻¹
- (2) 10.46 J deg⁻¹ mole⁻¹

- (3) $9.4 \text{ j deg}^{-1} \text{ mole}^{-1}$
- (4) zero