Scheme of Examination for M.Tech. (Computer Science)

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Nomenclature</th>
<th>Time (hrs)</th>
<th>External marks</th>
<th>Internal marks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Max. Pass</td>
<td>Max. Pass</td>
<td></td>
</tr>
<tr>
<td>First Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CS-110</td>
<td>Advanced Data Structure using C++</td>
<td>3</td>
<td>100 40 50 20</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>MT-CS-120</td>
<td>Visual Programming & Web Technology</td>
<td>3</td>
<td>100 40 50 20</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>MT-CS-130</td>
<td>Advances in Databases</td>
<td>3</td>
<td>100 40 50 20</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>MT-CS-140</td>
<td>Advanced Computer Architecture</td>
<td>3</td>
<td>100 40 50 20</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>MT-CS-150</td>
<td>S/W Lab – I</td>
<td>3</td>
<td>50 20 50 20</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MT-CS-160</td>
<td>S/W Lab – II</td>
<td>3</td>
<td>50 20 50 20</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MT-CS-170</td>
<td>Seminar</td>
<td>½</td>
<td>50 20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>850</td>
</tr>
<tr>
<td>Second Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CS-210</td>
<td>Object Oriented Analysis & Design using UML</td>
<td>3</td>
<td>100 40 50 20</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>MT-CS-220</td>
<td>Distributed Systems</td>
<td>3</td>
<td>100 40 50 20</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>MT-CS-230</td>
<td>Elective-I</td>
<td>3</td>
<td>100 40 50 20</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>MT-CS-240</td>
<td>Elective-II</td>
<td>3</td>
<td>100 40 50 20</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>MT-CS-250</td>
<td>S/W Lab – I</td>
<td>3</td>
<td>50 20 50 20</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MT-CS-260</td>
<td>S/W Lab – II</td>
<td>3</td>
<td>50 20 50 20</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MT-CS-270</td>
<td>Seminar</td>
<td>½</td>
<td>50 20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>850</td>
</tr>
<tr>
<td>Elective Papers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CS-230(i)</td>
<td>Software Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CS-230(ii)</td>
<td>Dependable Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CS-230(iii)</td>
<td>Software Quality Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CS-310</td>
<td>Advanced Optimization & Simulation Techniques</td>
<td>3</td>
<td>100 40 50 20</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>MT-CS-320</td>
<td>High Performance Networks</td>
<td>3</td>
<td>100 40 50 20</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>MT-CS-330</td>
<td>Elective-I</td>
<td>3</td>
<td>100 40 50 20</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>MT-CS-340</td>
<td>Elective-II</td>
<td>3</td>
<td>100 40 50 20</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>MT-CS-350</td>
<td>S/W Lab – I</td>
<td>3</td>
<td>50 20 50 20</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MT-CS-360</td>
<td>S/W Lab – II</td>
<td>3</td>
<td>50 20 50 20</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>MT-CS-370</td>
<td>Seminar</td>
<td>½</td>
<td>50 20</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>850</td>
</tr>
<tr>
<td>Elective Papers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CS-330(i)</td>
<td>Advanced Microprocessors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CS-330(ii)</td>
<td>Embedded Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CS-330(iii)</td>
<td>Mobile Computing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-CS-410</td>
<td>Dissertation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaluation</td>
<td></td>
<td>200 80</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presentation and Viva-Voce</td>
<td></td>
<td>150 60</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal Assessment</td>
<td></td>
<td></td>
<td>100 40 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>450</td>
</tr>
</tbody>
</table>

Seminar

Each student shall individually prepare and submit a seminar report on a topic of current relevance on stipulated time. A panel consisting of two teachers (internal) should evaluate the seminar report and the presentation. Marks should be distributed considering report writing, presentation, technical content, depth of knowledge, brevity and references and their participation in seminar. The time allotted for presentation is 30 minutes.

Dissertation

The supervisor for dissertation should be allocated to the student in the very beginning of the second semester facilitating the identification of dissertation topic, reviews of literature, etc. The one external examiner will evaluate dissertation and viva-voce will be conducted jointly by external examiner and the internal examiner (i.e. supervisor of the student).
MT-CS-110 ADVANCED DATA STRUCTURES USING C++

Maximum marks: 150 (External: 100, Internal: 50)

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I

Introduction to C++: Object-Oriented features of C++, Class and Objects, Static data members and member functions, Pointers, Dynamic memory allocation and de-allocation, constructors and destructors, Dynamic objects, Array of pointers to object, local and global class, Console I/O, Operator Overloading, Friend Function and Type Conversion, Inheritance, Virtual Functions, Generic Programming & Exception Handling, and File Handling. Searching (Linear Search, Binary Search, Heuristic Binary Search) and sorting (Selection Sort, Bubble Sort, Insertion Sort, Shell Sort, Merge Sort, Quick Sort, Radix Sort, Heap Sort) techniques in C++.

UNIT – II

Abstract Data Types, Stack: operations, implementation and applications, polish notation & inter-conversions, evaluation of postfix expression, Queue: operations implementations and applications, Dequeue and circular queue implementation and applications, Linear Linked List implementation and applications, Circular Linked List implementation and applications, Recursive and Doubly Linked List implementation and applications, Dynamic Implementation of Stack, Queue, Dequeue, Priority queues, and Binomial queue, Recursion and Backtracking, Applications of Recursion.

UNIT – III

Binary Search Trees operations, implementation and applications, recursive and non-recursive traversals, Binary threaded Trees implementation and traversal, Balanced Trees: node balanced and height balanced (AVL) trees implementation, Converting general trees into binary tree, Complete Binary tree, B-tree, m-ary tree, Random Search trees

UNIT – IV

Graphs and its representation in computers: Adjacency matrix based, incidence matrix based, adjacency lists, linked representation, depth first search (DFS) and Breadth first search (BFS) traversal, shortest paths algorithms: Bellman Ford, Dijkstra’s and Warshall’s algorithms, Spanning trees algorithms: Kruskal and Prim’s algorithms, Hashing and collision handling techniques.

Text Books:

Reference Books:
Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I
Introduction to Visual Basic: VB IDE, An overview of VB project types, VB as event-driven & object-based language, Default controls in Tool Box

UNIT – II
Menus and Dialog Boxes: Adding menus and manipulating, using Common Dialog Box
Working with Forms: Working with multiple forms, MDI form, loading, showing and hiding forms, drag and drop operation
Advanced Controls in VB: Scroll Bar, Slider Control,TreeView, List View, RichTextBox Control, Toolbar, Status Bar, Progress Bar, Cool bar, Image List, Tab Strip.

UNIT – III
Using modules & class modules in VB
ActiveX: Creating & using ActiveX Controls, Creating & using ActiveX Documents, ActiveX EXE, and ActiveX DLL
VB & Databases: The Data Controls and Data-Bound Controls, Using DAO, RDO, ADO.

UNIT – IV
Introduction to the Web: Internet and web protocols, an overview of HTML
Dynamic Web Pages: The need of dynamic web pages; an overview of DHTML, cascading style sheet, Active Web Pages: Need of active web pages
Web-Enabled Applications: Creating & using a Web-Browser, Programming E-Mail, Using the Internet Transfer Control, an introduction to IIS.

Text Books:
1. Visual Basic 6 Programming: Black Book By Steven Holzner dreamtech PRESS
2. Mastering Visual Basic 6 By Evangelos Petroutsos BPB

Reference Books:
1. Step by Step Microsoft Visual Basic 6.0 Professional By Michael Halvorson PHI
2. Visual basic 6 Complete BPB
4. Using Visual Basic 6 Special Edition By Brian Siler and Jeff Spotts PHI
MT-CS-130 ADVANCES IN DATABASES

Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I
Introduction: Database system concepts, Three-level Schema Model, Data Independence, Relational model concepts, Relational Database Design: Dependencies, Normalization

UNIT – II
The Enhanced Entity-Relationship Model and Object-Oriented Database: The ER model revisited, EER model: Subclasses, Super classes, Inheritance, Specialization and Generalization, Constraints and characteristics of specialization and Generalization; Object Model: Overview of Object-Oriented concepts, Object identity, Object structure, Type constructors, Encapsulation of operations, Methods, and Persistence, Type hierarchies and Inheritance, Complex objects

UNIT – III
Parallel and Distributed Databases and Client-Server Architecture: Architecture for parallel database; Distributed database concepts, Data fragmentation, Replication, and allocation techniques, Overview of Client-Server Architecture

UNIT – IV
Enhanced Data Models for Advanced Applications: Active database concepts, Temporal database concepts, Spatial databases, Deductive databases; Emerging Database Technologies: Mobile databases, Multimedia Databases, Geographic information systems (GIS); XML and Internet Databases: Structured, Semi-structured and Unstructured Data, Introduction to web databases and XML, Structure of XML data.

Text Books:

Reference Books:
3. C.J.Date, Longman, Introduction to Database Systems, Pearson Education
4. Thomas Connolly,Carolyn Begg, Database Systems, [3e], Pearson Education
Maximum marks: 150 (External: 100, Internal: 50)

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I
Parallel Computer Models: The state of computing, Classification of parallel computers, Evolution of computer architecture, System attributes to performance, Multiprocessors and Multicomputers, Multivector and SIMD computers.

Program and Network Properties: Conditions of Parallelism - data and resource dependences, Bernstein’s conditions, hardware and software parallelism. Program partitioning and scheduling - grain sizes and latency, grain packing and scheduling. Program Flow Mechanisms - control flow versus data flow, data flow architecture, demand driven mechanisms, comparison of flow mechanisms.

UNIT – II
System Interconnect Architectures: Network properties and routing, Static interconnection Networks – Linear Array, Ring & Chordal Ring, Barrel Shifter, Fat Tree, Mesh & Torus, Systolic Arrays, Hypercubes, Dynamic interconnection Networks, Multiprocessor system Interconnects, Hierarchical bus systems, Crossbar switch and multiport memory, Multistage and combining network.

UNIT – III
Memory Hierarchy Design: Inclusion, coherence & locality; memory capacity planning; Cache basics & cache performance, cache addressing models & mapping, multilevel cache hierarchies, interleaved memory.

UNIT – IV
Multiprocessor Architectures: Symmetric shared memory architectures, distributed shared memory architectures, models of memory consistency, cache coherence problem, Snoopy cache coherence protocol, directory-based protocols, design challenges of directory protocols, memory based directory protocols, cache based directory protocols, protocol design tradeoffs, synchronization.
Multicomputer Architectures: Message passing mechanisms – message routing schemes, deadlock and virtual channels, flow control strategies, multicast routing algorithms.

Text Books:

Reference Books:
MT-CS-210 OBJECT ORIENTED ANALYSIS & DESIGN USING UML

Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I

UNIT – II
Requirements Elicitation: Functional and non functional requirements; Greenfield, reengineering and interface engineering; Activities – Identifying actors, scenarios and use cases; relationships among actors and use cases; identifying initial analysis objects and non-functional requirements.
Analysis: Analysis Object Models and Dynamic Models; entity, boundary and control objects; generalization and specialization; Activities - identifying entity, boundary and control objects; mapping use cases to objects with sequence diagrams; modeling interaction among objects; identifying associations, aggregates and attributes; modeling state dependent behavior of individual objects; modeling inheritance relationships between objects.

UNIT – III
System Design: Concepts – Subsystems & Classes; Coupling & Cohesion; Layers & Partition; Architectural Styles; Activities – identifying design goals and subsystems.
Addressing Design Goals: UML Deployment Diagram; Activities – Mapping subsystems to processors; identifying and storing persistent data, providing access control, designing the global control flow; identifying boundary conditions; reviewing system design.

UNIT – IV
Reusing Pattern Solutions: Reuse Concepts – Application and Solution Objects, Specification and Implementation Inheritance, Delegation, Liskov Substitution principle; Design Patterns - Elements of a design pattern, Reuse Activities - Selecting Design Patterns and Components –Heuristics for selecting Design Patterns; Identifying and Adjusting Application Frameworks.
Specifying Interfaces: Concepts - Class Implementer, Class Extender & Class User; Types, Signature & Visibility; Invariants, Preconditions & Post conditions; Object Constraint Language (OCL); OCL Collections; OCL Qualifiers; Identifying missing attributes and operations; Specifying type signatures, visibility, preconditions, post conditions & invariants; Inheriting contracts.

Text Books:

Reference Books:
2. Satzinger, Jackson, Burd, Object-Oriented Analysis & Design with the Unified Process, Thomson-2007
MT-CS-220 DISTRIBUTED SYSTEMS

Maximum marks: 150 (External: 100, Internal: 50)
Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I
Introduction to Distributed Systems; Examples of Distributed Systems; Resource sharing and the Web; Challenges;
System Models: Introduction; Architectural models- Software layers, Client-server model, multiple servers, proxy servers and caches, peer processes; Variations on the client-server model; Design requirements for distributed architectures; Fundamental models- interaction model, failure model, security model;

UNIT – II
Networking and Internetworking: Introduction; Networking issues for Distributed systems; Types of Networks; Network principles- packet transmission, data streaming, switching schemes, protocols, ports, addressing, packet assembly and delivery, Routing, Congestion control, internetworking; TCP/IP architecture. Interprocess communication: Introduction; The API for the Internet protocols, sockets, UDP datagram communication, TCP stream communication; Client-server communication

UNIT – III
Distributed Object Model: Introduction; Communication between distributed objects; Remote procedure call; Security: Introduction; Overview of security techniques; Cryptographic algorithms; Digital signatures; certificates, firewalls; Case studies: Needham-Schroeder, Kerberos, SSL;
Distributed file systems: Introduction; Characteristics of file systems; Distributed file system requirements; File service architecture;

UNIT – IV
Name Services: Introduction; Domain name system, Name spaces, Name resolution, Caching, DNS queries, DNS name servers, DNS resource records;
Transactions and concurrency control: Introduction; Transactions, Concurrency control; Nested transactions; Locks, deadlocks; Timestamp ordering;
Introduction to distributed transactions; Flat and nested distributed transactions; Introduction to Replication; System model and group communication;

Text Book:

Reference Books:
MT-CS-230 (i) SOFTWARE TESTING

Maximum marks: 150 (External: 100, Internal: 50)
Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I
Software testing principles: Need for testing, Psychology of testing, Testing economics, White box, Black box, Grey box testing – Software Development Life Cycle (SDLC) and Testing, Software Verification & Validation, Weyuker's adequacy axioms.

UNIT – II
Testing strategies: White box testing techniques: Control Flow based testing - Statement coverage, Branch Coverage, Path Coverage; Data flow based testing, Mutation testing, Automated code coverage analysis, Black box testing techniques: Boundary value analysis, Robustness testing, Equivalence partitioning, Cause-effect graphing, Syntax testing - Finite state testing; Levels of testing - Unit, Integration and System Testing; Acceptance testing: α, β, and γ testing.

UNIT – III

UNIT – IV
Miscellaneous topics: Automated Tools for Testing - Static code analyzers, Test case generators, GUI Capture/Playback, Stress Testing, Testing Client-server applications, Testing compilers and language processors, Testing web-enabled applications, Ad hoc testing: Buddy testing, pair testing, Exploratory testing, Agile and extreme testing,

Text Books:

Reference Books:
MT-CS-230 (ii) DEPENDABLE SYSTEMS

Maximum marks: 150 (External: 100, Internal: 50)
Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I

UNIT – II
Fault tolerance: Principles-Redundancy-Exception and exception handling - System Design-Software Implemented Fault Tolerance (SIFT) and Fault Tolerant Multiprocessor (FTMP) design Strategies.

UNIT – III
Error detection: Measures and mechanisms - Structuring error detections - Damage confinement and Assessment, protections - protection in multilevel systems.

UNIT – IV
Error recovery: State restoration - Forward and Backward error recovery checkpoints and audit trails - Recovery cache - Recovery in concurrent systems - Fault treatment - Fault location - System repair.
Software fault tolerance: Recovery block schemes - Acceptance tests - N Version programming - Software reliability and analysis.

Reference Books:
MT-CS-230(iii) SOFTWARE QUALITY MANAGEMENT

Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I

UNIT – II
Tailoring the Software Quality Assurance Program: Reviews, Walkthrough, Inspection, and Configuration Audits.
Evaluation: Software Requirements, Preliminary design, Detailed design, Coding and Unit Test, Integration and Testing, System Testing, types of Evaluations.

UNIT – III
Trend Analysis: Error Quality, Error Frequency, Program Unit Complexity, Compilation Frequency.

UNIT – IV
Corrective Action: Identifying the Requirement for Corrective Action, Determining the Action to be Taken, Implementing the corrective Action, Periodic Review of Actions Taken, Traceability, Records, Software Quality Program Planning.
Social Factors: Accuracy, Authority, Benefit, Communication, Consistency, and Retaliation

Text Books:

Reference Books:
MT-CS-240(i) DIGITAL IMAGE PROCESSING

Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I
Introduction to Digital Image Processing and its origins; Example fields using digital image processing; Fundamental steps in digital image processing; Components of an Image Processing system; Image sampling and Quantization; Relationships between pixels; Mathematical tools used in image processing;

UNIT – II
Image Enhancement: Intensity transformations and spatial filtering; Histogram processing; Fundamentals of spatial filtering; Smoothing and sharpening spatial filters; Filtering in frequency domain: Fourier Series and Transform; Sampling; Fourier Transform of Sampled Functions; Discrete Fourier Transform; Frequency Domain Filtering Fundamentals; Image smoothing and sharpening using Frequency Domain Filters; Homomorphic Filtering;

UNIT – III
Image Restoration: Model of Image Degradation/Restoration process; Noise models; Linear, Inverse filtering; Mean Square Error Restoration; Least Square Restoration; Singular value Decomposition; Image Compression Fundamentals: Lossless and Lossy Compression; Basic Compression Methods: Huffman Coding; Run-Length Coding; LZW Coding; Bit-Plane Coding; Predictive Coding; Transform Coding; Wavelet Coding;

UNIT – IV
Image Segmentation: Fundamentals; Point, Line, and Edge Detection; Thresholding; Region-Based Segmentation; Motion-Based Segmentation; Image Representation: Boundary Representation; Chain Codes; Polygonal Approximations; Signatures; Boundary Segments; Skeletons; Boundary Descriptors: Simple Descriptors; Shape Numbers; Fourier Descriptors; Regional Descriptors; Topological Descriptors; Texture;

Text Book:
1. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, PHI.

Reference Books:
2. B.Chanda, D. Dutta Majumder, Digital Image Processing and Analysis, PHI.
MT-CS- 240 (ii) BIOMETRICS

Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I
Biometrics technology evolution, verification and identification, introduction to Biometrics, Fingerprint Recognition, Face Recognition, Iris Recognition, Hand Geometry Recognition, Gait Recognition, Voice Biometrics, On-Line Signature Verification, Face Recognition, comparison of various biometrics, biometric system errors, biometric deformations.

UNIT – II
False match rate, false non-match rate, biometric applications, biometric sensor interoperability, user psychology in biometric enrollment, Multi-biometrics and multimodal biometrics, Multi-spectral Face Recognition.

UNIT – III
Attacks against Biometric Systems, Biometric Cryptography, Fusion in biometrics, Liveness detection in biometrics, Fingerprint identification technology, scope of fingerprint biometric systems, how to improve the privacy and security of fingerprint biometric system. SFING (synthetic fingerprint generator).

UNIT – IV

Text Books:

Reference Books:
Maximum marks: 150 (External: 100, Internal: 50)
Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I
Computer security: Goal, Vulnerabilities, threats, attacks, and controls; Cryptography: Terminology and Background, Substitution Ciphers, Transpositions, Cryptanalysis, Data Encryption Standard, DES & AES Algorithms and comparison, Public Key Encryption
Program Security: Secure Programs, Non-malicious Program Errors, Viruses and Other Malicious Code, Controls against Program Threats

UNIT – II

UNIT – III
Database and Data Mining Security: Security Requirements, Reliability and Integrity, Sensitive data, Monitors, Multilevel Databases -Security Issues, Data Mining - Privacy and Sensitivity, Data Correctness and Integrity

UNIT – IV

Text Books:

Reference Books:
MT-CS-310 ADVANCED OPTIMIZATION & SIMULATION TECHNIQUES

Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I
Linear Programming: Formulation, Graphical solution, standard and matrix form of linear programming problems, Simplex method and its Algorithm, Two-phase Simplex method.
Duality: General Rules for converting any Primal into its Dual, Dual Simplex method.
Assignment models: Mathematical formulation of Assignment Problem, Hungarian algorithm for Assignment problems, Unbalanced Assignment problems.

UNIT – II
Integer Programming: Importance, Need and importance of Integer Programming, Gomory’s All Integer Programming Problem technique and its algorithm.

UNIT – III

UNIT – IV
Simulation Experiments: Run length of Static and Dynamic Stochastic Simulation Experiments, Minimizing variability in simulators without increasing Number of simulation Runs.
Design of Application Simulators – for Multi-server Queuing System, PERT, Optimizing Inventory Policy and Cost in Business environment.

Text Books:

Reference Books:
MT-CS- 320 HIGH PERFORMANCE NETWORKS

Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I

The Motivation for Internetworking; Need for Speed and Quality of Service; History of Networking and Internet; Advanced TCP/IP and ATM Networks; Internet Services; Internet Architecture; Interconnection through IP Routers; Standards; TCP Services; TCP format and connection management; Encapsulation in IP; UDP Services, Format and Encapsulation in IP; IP Services; Header format and addressing; Fragmentation and reassembly; classless and subnet address extensions; subnetting and supernetting; CIDR; IPv6;

UNIT – II

Congestion Control and Quality of Service: Data traffic; Network performance; Effects of Congestion; Congestion Control; Congestion control in TCP and Frame Relay; Link-Level Flow and Error Control; TCP flow control;
Quality of Service: Flow Characteristics, Flow Classes; Techniques to improve QoS; Traffic Engineering; Integrated Services; Differentiated Services; QoS in Frame Relay and ATM;
Protocols for QoS Support: Resource Reservation-RSVP; Multiprotocol Label Switching; Real-Time Transport Protocol;

UNIT – III

High Speed Networks: Packet Switching Networks; Frame Relay Networks; Asynchronous Transfer Mode (ATM); ATM protocol Architecture; ATM logical connections; ATM cells; ATM Service categories; ATM Adaptation Layer;
Optical Networks: SONET networks; SONET architecture;
High-Speed LANs: The Emergence of High-Speed LANs; Bridged and Switched Ethernet; Fast Ethernet; Gigabit Ethernet; Wireless LANs: IEEE 802.11, Bluetooth;
Connecting LANs: Devices, Backbone networks, Virtual LANs;
Wireless WANs: Cellular Telephony; Generations; Cellular Technologies in different generations; Satellite Networks;

UNIT – IV

Internet Routing: Interior and Exterior gateway Routing Protocols; Routers and core routers; RIP; OSPF; BGP; IDRP; Multicasting; IGMP; MOSPF; Routing in Ad Hoc Networks;
Routing in ATM: Private Network-Network Interface;
Private Network Interconnection: Private and Hybrid Networks; Virtual Private Network;
Error and Control Messages: ICMP; Error reporting vs Error Correction; ICMP message format and Delivery; Types of messages;
Address Resolution (ARP); BOOTP; DHCP; Remote Logging; File Transfer and Access; Network Management and SNMP; Comparison of SMTP and HTTP; Proxy Server; The Socket Interface;

Text Books:
1. William Stallings, “High-Speed Networks and Internets, Performance and Quality of Service”, Pearson Education;

Reference Books:
1. B. Muthukumaran, “Introduction to High Performance Networks”, Vijay Nicole Imprints.
2. Wayne Tomasi, “Introduction to Data Communications and Networking”, Pearson Education.
MT-CS-330 (i) ADVANCED MICROPROCESSORS

Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I
Microprocessor & Its Architecture: Internal microprocessor architecture, real mode memory addressing, protected mode memory addressing, memory paging, flat mode memory.
Addressing Modes: Data addressing modes, program memory addressing modes, stack memory addressing modes.

UNIT – II
Memory Interface: Memory devices, address decoding, Pentium through Core2 (64-bit) memory interface, Dynamic RAM, EDO Memory, SDRAM, DDR, DRAM controllers.
Basic I/O Interface: I/O interface, I/O port address decoding, Programmable peripheral interface, 8254 programmable interval timer, 16550 programmable communications interface.

UNIT – III
Interrupts: Basic interrupts processing, hardware interrupts, expanding the interrupt structures, 8259A programmable interrupt controller.

UNIT – IV
Pentium & Pentium Pro Microprocessors: Pentium processor, special Pentium registers, Pentium memory management, new Pentium instructions, Pentium Pro microprocessor, special Pentium Pro features.
Pentium IV & Core2 Microprocessors: Memory interface, register set, hyper threading technology, multiple core technology, CPUID, model specific registers, performance monitoring registers, 64-bit extension technology.

Text Book:

Reference Books:
MT-CS-330 (ii) EMBEDDED SYSTEMS

Maximum marks: 150 (External: 100, Internal: 50)
Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I

UNIT – II
Data Transfer and Logical Instructions.

UNIT – III
Applications: Interfacing with Keyboards, Displays, D/A and A/D Conversions, Multiple Interrupts, Serial Data Communication.
Introduction to Real – Time Operating Systems: Tasks and Task States, Tasks and Data, Semaphores, and Shared Data; Message Queues, Mailboxes and Pipes, Timer Functions, Events, Memory Management, Interrupt Routines in an RTOS Environment

UNIT – IV
Introduction to advanced architectures: ARM and SHARC, Processor and memory organization and Instruction level parallelism; Networked embedded systems: Bus protocols, I2C bus and CAN bus; Internet-Enabled Systems, Design Example-Elevator Controller.

Text Books:
1. Wayne Wolf, Computers and Components, 2/e, Elseveir India Private Limited.

Reference Books:
1. Embedding system building blocks, Labrosse, via CMP publishers.
5. Raj Kamal, Microcontrollers, Pearson Education.
MT-CS-330 (iii) MOBILE COMPUTING

Maximum marks: 150 (External: 100, Internal: 50)
Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I
Overview of Mobile Computing and its applications; Radio Communication; Mobile Computing Architecture; Mobile System Networks; Data Dissemination; Mobility Management; Introduction to Cellular network: components, Architecture, Call set-up, Frequency Reuse and Co-channel cell, Cell Design, Interference, Channel assignment, Hand Off;

UNIT – II
Cellular Network Standards; Digital cellular communication; Multiple Access Techniques: FDMA, TDMA, CDMA; GSM: System Architecture, Mobile services & features, Protocols, Radio interface, Handover, GSM Channels, Localization and calling, User validation; General Packet Radio Service; Introduction to CDMA based systems; Spread spectrum in CDMA systems; coding methods in CDMA; IS-95;

UNIT – III

UNIT – IV

Text Books:

Reference Books:
Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I

UNIT – II

UNIT – III
Genetic algorithms(GA), Evolution strategies(Ess), Evolutionary programming(EP), Genetic Programming(GP), Selecting, crossover, mutation, schema analysis, analysis of selection algorithms; convergence; Markov & other stochastic models.

UNIT – IV
Random Optimization, Simulated Annealing, Tabu Search, Ant Colony Optimization, Particle Swarm Optimization, Memetic Algorithms.

Text Books:

Reference Books:
MT-CS-340 (ii) GENETIC ALGORITHM

Maximum marks: 150 (External: 100, Internal: 50) Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I
Introduction: Goal of optimization, local and global optima, Multi-objective optimization, Problems in global optimization like premature convergence to a local optimum, overfitting etc, A brief history of evolutionary computation, The appeal of evolution, Biological terminologies, Search spaces and fitness landscapes, Conventional Optimization and Search Techniques - Gradient-Based Local Optimization Method, Random Search, Stochastic Hill Climbing, Simulated Annealing etc.

UNIT – II
Genetic algorithms(GA), Evolution strategies(Ess), Difference between Genetic Algorithm and traditional methods, Selection – elitism, rank selection, tournament selection, Boltzmann selection, steady state selection etc.; Crossover, mutation; Schema theorem – schemata and masks, Wildcards, Holland’s schema theorem and criticism; convergence.

UNIT – III
Computer Implementation of Genetic Algorithm: Data Structures, Reproduction, Crossover, and mutation, Mapping objective functions to fitness form, Fitness scaling, Different types of encodings - Binary Encoding, Octal Encoding, Hexadecimal Encoding, Permutation Encoding, Value Encoding, Tree Encoding etc.

UNIT – IV
Advanced operators and techniques in Genetic Search: Dominance, Diploidy, and Abeyance, Inversion and other reordering operators like partially matched crossover, order crossover and cycle crossover, Niche and speciations, Micro-operators, Knowledge based techniques, Genetic algorithm and parallel processors. Classification of Genetic Algorithm: Simple Genetic Algorithm(SGA), Parallel and Distributed Genetic Algorithm (PGA and DGA), Hybrid Genetic Algorithm (HGA), Adaptive Genetic Algorithm(AGA), Fast Messy Genetic Algorithm (FmGA), Independent Sampling Genetic Algorithm(ISGA).

Text Books:

Reference Books:
MT-CS-340 (iii) NEURAL NETWORKS AND FUZZY LOGIC

Maximum marks: 150 (External: 100, Internal: 50)
Time: 3 hours

Note: Examiner will be required to set NINE questions in all. Question Number 1 will consist of total 7 parts (objective type/short-answer type questions) covering the entire syllabus and will carry 28 marks. In addition to the compulsory question there will be four units i.e. Unit-I to Unit-IV. Examiner will set two questions from each Unit of the syllabus and each question will carry 18 marks. Student will be required to attempt FIVE questions in all. Question Number 1 will be compulsory. In addition to compulsory question, student will have to attempt four more questions selecting one question from each Unit.

UNIT – I
Fundamentals of ANN, Biological prototype, Neural Network Concepts, Definitions – Activation, Functions, single layer and multilayer networks, Training ANNs, perceptrons, Exclusive OR problem, Linear separability, storage efficiency, perceptron learning - perceptron training algorithms, Hebbian learning rule - Delta rule, Kohonen learning law, problem with the perceptron training algorithm.
Back propagation neural network, Training algorithm, network configurations, Back propagation error surfaces, Back propagation learning laws, Network paralysis - Local minima, and temporal instability

UNIT – II
Counter propagation Networks, Kohonen layer, Training the Kohonen layer, preprocessing the input vectors, initializing the weight vectors.
Statistical properties, Training the Grossberg layer- Feed forward counter propagation Neural Networks, Applications.
Statistical methods simulated annealing, Boltzmann Training, Cauchy training - artificial specific heat methods, Application to general non-linear optimization problems, back propagation and cauchy training.
Hopfield network

UNIT – III

UNIT – IV

Text Books:
2. Anderson J.A., An Introduction to Neural Networks, PHI.
3. G.J.Klir & B.Yuan, Fuzzy sets & Fuzzy logic, PHI.

Reference Books:
2. Freeman A. James, Skapura M. David, Neural networks algorithms, applications and programming Techniques, Pearson Education.